This paper provides new constructions and lower bounds for subspace codes,using Ferrers diagram rank-metric codes from matchings of the complete graphand pending blocks. We present different constructions for constant dimensioncodes with minimum injection distance $2$ or $k-1$, where $k$ is the constantdimension. Furthermore, we present a construction of new codes from old codesfor any minimum distance. Then we construct non-constant dimension codes fromthese codes. The examples of codes obtained by these constructions are thelargest known codes for the given parameters.
展开▼
机译:本文使用来自完整图和未决块的匹配的费雷尔图秩度量代码,为子空间代码提供了新的构造和下界。我们介绍了具有最小注入距离$ 2 $或$ k-1 $的恒定尺寸代码的不同构造,其中$ k $是恒定尺寸。此外,我们提出了在任何最小距离下从旧代码构造新代码的方法。然后,我们从这些代码构造非恒定维代码。通过这些构造获得的代码示例是给定参数的最大已知代码。
展开▼